Кто придумал простые числа кратко. Факты о числах. Числа простые и составные

Факты о числах. Это и простые числа и многие другие. Некоторые числа, такие как число Пи и ряд других мы вынесли в отдельные материалы. Так что советуем почитать и их. Приведем здесь несколько занимательных фактов о числах , которые, наверняка, будут вам интересны.

Факты про отрицательные числа

В наше время отрицательные числа известны многим, но так было далеко не всегда. Впервые отрицательные числа стали применять в Китае в III веке, но разрешено было их использовать лишь в исключительных случаях, так как их считали бессмыслицей. Несколько позднее отрицательные числа стали применять в Индии для обозначения долгов.

Так, в труде «Математика» в девяти книгах, изданном в 179 г. н. э., во времена династии Хань и прокомментированном в 263 г. Лю Хуэйем, в китайской системе счётных палочек для отрицательных чисел применялись чёрные палочки, а для положительных - красные. Также, для обозначения отрицательных чисел, Лю Хуэй использовал наклонные счётные палочки.





Знак «-», который сейчас используется для обозначения отрицательных чисел впервые был замечен в древнем манускрипте Бахшали в Индии, но среди учёных нет единого мнения относительно того, когда он был составлен, диапазон разногласий составляет от 200 г. до 600 г. н. э.


Отрицательные числа уже были известны в Индии в 630 г. н. э.. Они были использованы математиком Брахмагуптой (598-668 гг).


Впервые в Европе отрицательные числа начали использовать примерно в 275 г. н. э.. Их ввёл в обиход греческий математик Диофант Александрийский, но на Западе их считали абсурдными вплоть до появления книги «Ars Magna» («Великое искусство»), написанной в 1545 г. итальянским математиком Джироламо Кардано (1501-1576).




Факты о простых числах

Числа 2 и 5 являются единственными из ряда простых чисел, которые заканчиваются на 2 и 5.

Прочие факты о числах

Число 18, является единственным (кроме 0) числом, сумма цифр которого в 2 раза меньше него самого.


2520 является самым маленьким числом, которое можно без остатка поделить на все числа начиная с 1 и заканчивая 10.




Число «пять» на тайском языке произносится как «ха». Поэтому число составленное из трёх пятёрок - 555, будет произносится как сленг-фраза, обозначающая человеческий смех - "Ха, ха, ха".

Все мы знаем, что существую слова палиндромы. То есть те, которые можно читать слева направо и справа налево и значение их не меняется. Однако, существуют и числа-палиндромы (палиндромоны). Они представляют собой зеркальные числа, которое будет читается и иметь одинаковое значение в обоих направлениях, например, 1234321.





Слово Googol (происхождение бренда Google) обозначает число 1 со 100 нулями.

Единственным числом, которое нельзя написать римскими цифрами является "Ноль". Также, в современной математике ноль имеет некоторые особенности своей трактовки. Так, в российской математике его не причисляют к ряду натуральных чисел, а зарубежная наука относит.

Введение

Простое число -- это натуральное число, которое имеет ровно два различных натуральных делителя: единицу и самого себя. Все остальные числа, кроме единицы, называются составными. Таким образом, все натуральные числа, бомльшие единицы, разбиваются на простые и составные. Изучением свойств простых чисел занимается теория чисел.

Основная теорема арифметики утверждает, что каждое натуральное число, большее единицы, представимо в виде произведения простых чисел, причём единственным способом с точностью до порядка следования сомножителей. Таким образом, простые числа -- элементарные «строительные блоки» натуральных чисел.

Представление натурального числа в виде произведения простых называется разложением на простые или факторизацией числа.

Из истории простых чисел

Греческий математик Эратосфен, живший более чем за 2000 лет до н.э., составил первую таблицу простых чисел. Эратосфен родился в городе Кирене, получил образование в Александрии под руководством Каллимаха и Лисания, в Афинах слушал философов Аристона Хиосского и Аркесилая, тесно сблизился со школой Платона. В 246г. до.н.э., после смерти Каллимаха, царь Птолемей Эвергет вызвал Эратосфена из Афин и поручил ему заведовать Александрийской библиотекой. Эратосфен работал во многих областях науки: филология, грамматика, история, литература, математика, хронология, астрономия, география и музыка.

Для отыскания простых чисел Эратосфен придумал такой способ. Он записал все числа от 1 до какого-то числа, а потом вычеркнул единицу, которая не является ни простым, ни составным числом, затем вычеркивал через одно все числа, идущие после 2 (числа, кратные 2, т.е. 4,6,8, и т.д.) . Первым оставшимся числом после 2 был 3. Далее вычеркивались все числа кратные 3, т.е. 6,9,12, и т.д. В конце концов оставались невычеркнутыми только простые числа. (рис.1)

Так как греки делали записи на покрытых воском табличках или на натянутом папирусе, а числа не вычёркивали, а выкалывали иглой, то таблица в конце вычислений напоминала решето. Поэтому метод Эратосфена называют решетом Эратосфена: в этом решете «отсеиваются» простые числа от составных. Таким способом в настоящее время составляют таблицы простых чисел, но уже с помощью вычислительных машин.

Простые числа в природе и их использование человеком

1) Периодические цикады

Люди изменили окружающий нас мир, построили невероятные города, и разработали впечатляющие технологии, которые привели к появлению современного мира. Спрятанный под внешней оболочкой планеты, где мы живем, невидимый мир состоит из чисел, последовательностей и геометрии. Математика - это код, который придает смысл всей вселенной.

В лесах Теннеси этим летом часть кода, о котором идет речь, в прямом смысле слова выросла прямо из земли. Каждые 13 лет примерно на 6 недель хор насекомых очаровывает всех, кто становится свидетелем этого редкого природного явления. Выживание этих цикад, которых можно найти только в восточных регионах северной Америки, зависит от странных свойств некоторых из самых фундаментальных чисел в математике - простых чисел, чисел, делящихся только на самих себя и других.

Цикады появляются здесь периодически, но их появление всегда происходит в те года, числа которых состоят из простых чисел. В случае с выводком, который появился вокруг Нэшвилле в этом году, то с момента их прошлого появления прошло 13 лет. Выбор 13-детнего цикла не кажется случайным. В разных частях северной Америки есть еще два выводка, жизненный цикл которых также составляет 13 лет. Они возникают в разных регионах и в разные года, но между появлениями этих живых существ проходит ровно 13 лет. Вдобавок, существует еще 12 выводков насекомых, которые появляются через каждые 17 лет.

Вы можете принять эти числа за совершенно случайные. Но это очень любопытно, что не существует цикад с циклом жизни, равным 12, 14, 15, 16 или 18 лет. Однако, посмотрите на этих цикад глазами математика и картина начинает проясняться. Потому, что числа 13 и 17 оба являются неделимыми, это дает цикадам эволюционные преимущества между другими животными, циклы жизни которых являются периодическими, а не простыми числами. Возьмем, к примеру, хищника, который появляется в лесах каждые шесть лет. Тогда восьми- или девятилетние циклы жизни цикад будут совпадать с циклами жизни хищников, в то время как семилетние циклы жизни будут совпадать с циклом жизни хищника намного реже.

Эти насекомые вмешались в математический код, чтобы выжить.

2) Криптография

Цикады обнаружили пользу использования простых чисел для своего выживания, однако люди поняли, что эти числа являются не только ключом к выживанию, но и огромным количеством строительного материала в математике. Каждое число, по сути, представляет собой совокупность простых чисел, а совокупность чисел составляет математику, а из математики вы получите целый научный мир.

Простые числа находят спрятанными в природе, но человечество научилось их использовать.

Понимание фундаментального характера этих чисел и использование их свойств людьми, в буквальном смысле поставило их в основу всех кодов, которых охраняют мировые кибер-секреты.

Криптография, благодаря которой наши кредитные карточки остаются в безопасности, когда мы покупаем что-нибудь онлайн, использует те же числа, которые защищают цикад в Северной Америке - простые числа. Каждый раз, когда вы вводите номер своей кредитной карты на вебсайте, вы полагаетесь на то, что простые числа сохранят ваши тайны и информацию о вас в секрете. Для кодирования вашей кредитной карты ваш компьютер получает публичный номер Н с вебсайта, который и будет использоваться для совершения операций с вашей кредитной картой.

Это перемешивает ваши данные так, что закодированное письмо может быть послано через интернет. Вебсайт использует простые числа, на которые делят число Н, чтобы раскодировать послание. Хотя Н является открытым числом, простые числа, из которых оно состоит, являются секретными ключами, которые расшифровывают данные. Причиной, по которой такое кодирование является настолько безопасным, является то, что очень легко перемножить простые числа между собой, но разложить число на простые практически невозможно.

3) Загадки простых чисел

Простые числа являются атомами арифметики, гидрогеном и оксигеном мира чисел. Но вопреки их фундаментальному характеру, они также являют собой одну из самых больших загадок математики. Потому что, проходя по вселенной чисел практически невозможно предсказать, где вы встретите следующее простое число.

Мы знаем, что количество простых чисел уходит в бесконечность, но поиск закономерности появления простых чисел является самой большой загадкой математики. Приз в миллион долларов обещан тому, кто сможет раскрыть тайну этих чисел. Загадка о том, когда первый раз цикады начали пользоваться простыми числами, чтобы выжить является такой же сложной, как и сама загадка простых чисел.

Простые числа - «капризны». Таблицы простых чисел обнаруживают большие «неправильности» в распределении простых чисел

Пестрота картины распределения простых чисел увеличивается еще более, если отметить, что существуют пары простых чисел, которые отделены в натуральном ряду только одним числом («близнецы»). Например. 3 и 5, 5 и 7, 11 и 13, 10016957 и 10016959. С другой стороны, существуют пары простых чисел, между которыми много составных. Например, все 153 числа от 4652354 до 4652506 являются составными.

За нахождение простых чисел из более чем 100 000 000 и 1 000 000 000 десятичных цифр EFF назначила денежные призы соответственно в 150 000 и 250 000 долларов США.

Разные задачи, связанные с простыми числами, были и остаются до сих пор важными и интересными для математики, многие из них до сих пор не решены, и с их исследованием связаны любопытные факты из истории математики .

Так, еще в XVI-XVII вв. математиками начали рассматриваться числа вида $2^n-1$, и при исследовании их на простоту в истории было допущено много ошибок. Ясно, что если n - составное число , то это число также составное: если $n=km$, то $2^n-1=(2^k)^m-1^m$ - как разность степеней делится на разность оснований, т.е. не является простым, и поэтому естественно рассматривать только n.

Но и при простых n это число может оказаться составным: например, 2 11 =2047=23 89, оно составное и при n=23, и n=37, что установлено Ферма , через 40 с лишним лет обнаружившим ошибку в работе другого исследователя, утверждавшего, что при n=23, 29, 31, 37 число $2^n-1$ простое, но не заметившего другой ошибки: при n=29 оно также не является простым. А это обнаружил - еще примерно через 100 лет - Эйлер , а также и то, что при n=31 это число все же действительно является простым.

В XVII в. числами вида $2^n-1$ занимался французский монах Марен Мерсенн , который привел полный список простых n от 2 до 257, для которых эти числа являются простыми, в котором он предвосхитил указанный выше результат Эйлера, но и этот список содержал ошибки, и одну из них нашел спустя два с половиной века, в 1883 г., русский сельский священник-учитель Иван Михеевич Первушин . Это событие отмечено мемориальной доской на его доме в Зауралье - в г. Шадринске Курганской области. А ошибочно указанные Мерсенном n=67 и n=257 были исключены из его списка лишь в XX в.

Конечно, в современном Мире за такие ошибки могли бы и в суд подать, и тогда Мерсенну понадобилось бы юридическое представительство интересов в суде от хорошего адвоката. Хотя сейчас юридически представлять интересы в суде могут многие, но настоящими профессионалами являются только единицы. А французскому монаху уже вообще все равно!

Простые числа вида $2^n-1$ получили название чисел Мерсенна , и до сих пор математики не знают, конечно или бесконечно множество таких чисел, а в 1996 г. найдено тридцать пятое число Мерсенна - при n=1 398 629, и в нем примерно 400 тысяч цифр, 15 мая 2004 г. найдено тридцать шестое число, при этом компьютеру понадобилось на это несколько часов. Ясно, что найти такое громадное число без использования компьютеров немыслимо. В истории математики есть и еще один казус, связанный с простыми числами, так называемыми числами Ферма - числами вида $2^{2^n}+1$. Опять понятно, почему показатель степени k=2 п имеет такой, казалось бы, частный вид, но 2 п - это общий вид числа, не имеющего нечетных простых делителей, а если этот показатель k имеет такой делитель p, то число 2 п +1 не является простым: если k=pq, то 2 k +1=(2 q) р +1 p , а сумма нечетных степеней делится на сумму оснований. Сам Ферма считал, что эти числа все являются простыми, но Эйлер показал, что это утверждение ошибочно, нашел к нему контрпример: $2^{32}+1=4 294 967 297=641\times6 700 417$.

И самое удивительное открытие в связи с числами Ферма сделал великий математик Гаусс , имя которого вы наверняка слышали в связи с его моментальным вычислением суммы 1+2+3+…+100: оказывается, что правильный n-угольник можно построить тогда и только тогда, когда все нечетные простые делители числа n являются числами Ферма. Поэтому, в частности, правильный 7-угольник циркулем и линейкой построить нельзя, а 17-угольник - можно: $17=2^{2^2}+1$.

Простые и составные числа. Признаки делимости.

2014-02-01

Частное
делитель числа
кратное число
четное число
нечетное число
простое число
составное число
Признак делимости на 2
Признак делимости на 4
Признак делимости на 5
Признак делимости на 3 и 9

Если $a$ и $b$ - натуральные числа, причем
$a=bq$,
где $q$ - также натуральное число, то говорят, что $q$ -

частное от деления числа $a$ на число $b$, и пишут: $q = a/b$.

Также говорят, что $a$ делится на $b$ нацело или без остатка .

Всякое число $b$, на которое $a$ делится без остатка, называется делителем числа $a$

Само

число $a$ но отношению к своему делителю называется кратным

Таким образом, числа, кратные $b$, суть числа $b, 2b, 3b, \cdots$.

Числа, кратные числу 2 (т. е. делящиеся на 2 без остатка), называются четными

.

Числа, не делящиеся на 2 нацело, называются нечетными

Каждое натуральное число либо четно, либо нечетно.

Если каждое из двух чисел $a_{1}, a_{2}$ является кратным числа $b$, то и сумма $a_{1}+a_{2}$ - кратное числа $b$. Это видно из записи $a_{1}=bq_{1}, a_{2}=bq_{2}; a_{1}+a_{2}=bq_{1}+bq_{2}= b (q_{1}+q_{2})$.
Обратно, если $a_{1}$ и $a_{1}+a_{2}$ - кратные числа $b$, то $a_{2}$ - также кратное числа $b$.

Всякое отличное от единицы натуральное число имеет по меньшей мере два делителя: единицу и самоё себя.

Если число не имеет никаких других делителей, кроме себя и единицы, оно называется простым

.

Число, имеющее какой-нибудь делитель, отличный от себя и единицы, называют составным

Числом. Единицу принято не относить ни к простым, ни к составным числам. Вот несколько первых простых чисел, записанных в порядке возрастания:
$2,3,5,7,11,13,17, \cdots$
Число 2 - единственное четное простое число; все остальные простые числа - нечетные.

То, что простых чисел имеется бесконечное множество, было установлено еще в древности (Евклид, III век до нашей эры).

Идея доказательства Евклида бесконечности множества простых чисел весьма проста. Допустим, что простых чисел - конечное число; перечислим их все, например, расположив в порядке возрастания:
$2,3,5, \cdots , p$. (1)
Составим число, равное их произведению плюс единица:
$a = 2 \cdot 3 \cdot 5 \cdots p+1$.
Очевидно, что это число не делится ни на одно из чисел (1). Следовательно, либо оно само является простым, либо, если оно составное, то имеет простой делитель, отличный от чисел (1), что противоречит допущению о том, что в записи (1) перечислены все простые числа.

Это доказательство представляет большой интерес, так как дает пример доказательства теоремы существования (бесконечного множества простых чисел), не связанного с фактическим отысканием объектов, существование которых доказывается.

Можно доказать, что всякое составное число представимо в виде произведения простых чисел. Так, например,
$1176 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 7 \cdot 7$ или $1176 = 2^{3} \cdot 3 \cdot 7^{2}$.
Как видно из этого примера, в разложении данного числа на простые множители некоторые из них могут повторяться несколько раз.

В общем случае в записи разложения числа $a$ на простые множители
$a = p^{k_{1}}_{1} p^{k_{2}}_{2} \cdots p^{k_{n}}_{n}$ (2)
подразумевается, что все простые числа $p_{1},p_{2}, \cdots , p_{n}$ различны между собой (причем $p_{1}$ повторяется множителем $k_{1}$ раз, $p_{2}$ повторяется множителем $k_{2}$ раз и т. д.). При этом условии можно доказать, что разложение единственно с точностью до порядка записи сомножителей.

При разложении числа на простые множители полезно бывает использовать признаки делимости, позволяющие выяснить, делится ли данное число на некоторое другое число без остатка, не производя самого деления. Мы выведем признаки делимости на числа 2, 3, 4, 5, 9.

Признак делимости на 2. На 2 делятся те и только те числа, в записи которых последняя цифра выражает четное число (0, 2, 4, 6 или 8).

Доказательство. Представим число $\overline{c_{1}c_{2} \cdots c_{m}}$ в виде $\overline{c_{1}c_{2} \cdots c_{m}} = \overline{c_{1}c_{2} \cdots 0} + c_{m}$.
Первое слагаемое в правой части делится на 10 и потому - четное; сумма будет четной тогда и только тогда, когда $c_{m}$ - четное число.

Признак делимости на 4 Число $\overline{c_{1}c_{2} \cdots c_{m}}$ делится на 4 тогда и только тогда, когда двузначное число, выражаемое его последними двумя цифрами, делится на 4.

Доказательство. Представим число $\overline{c_{1}c_{2} \cdots c_{m}}$ в виде
$\overline{c_{1}c_{2} \cdots c_{m}} = \overline{c_{1}c_{2} \cdots 00} + \overline{c_{m-1}c_{m}}$
Первое слагаемое делится на 100 и тем более на 4. Сумма будет делиться на 4 в том и только в том случае, если $\overline{c_{m-1}c_{m}}$ делится на 4.

Признак делимости на 5. На 5 делятся те и только те числа, запись которых заканчивается цифрой 0 или цифрой 5.

Признаки делимости на 3 и на 9. Число делится на 3 {соответственно на 9) в том и только в том случае, когда сумма его цифр делится на 3 (соответственно на 9).

Доказательство. Запишем очевидные равенства
$10 = 9+1$,
$100 = 99 + 1$,
$1000 = 999+1$,
$ \cdots $,
в силу которых можно число $\overline{c_{1}c_{2} \cdots c_{m}}$ представить в виде
$a_{m}=c_{1}(99 \cdots 9 + 1) + \cdots + c_{m-1} (9+1) + c_{m}$
или
$a_{m}=c_{1} \cdot 99 \cdots 9 + \cdots + c_{m-1} \cdot 9 + (c_{1} + c_{2} + \cdots + c_{m-1} + c_{m})$.
Видно, что все слагаемые, кроме, быть может, последней скобки, делятся на 9 (и тем более на 3). Поэтому данное число делится на 3 или на 9 тогда и только тогда, когда делится на 3 или на 9 сумма его цифр $c_{1}+c_{2}+ \cdots + c_{m}$.